Merging and combining dynamic/expando objects in C#

I ran into a very interesting situation today where I needed to merge two dynamically created objects in a very similar way to the way that the jQuery Extend method works.

The scenario was that I was creating my own custom override for the MVC DropDownListFor helper and needed to be able to both accept html attributes and had a number of attributes that I wanted to preset.

So the basic method looked like this.

public static MvcHtmlString DropDownListFor<TModel, TProperty>(this HtmlHelper<TModel> htmlHelper, Expression<System.Func<TModel, TProperty>> expression, string ajaxDataSourceUrl, object htmlAttributes)
{
    dynamic attributes = Merge(new
    {
        @class = "AjaxDropDown",
        data_AjaxDataSourceUrl = ajaxDataSourceUrl,
    }, htmlAttributes);

    MvcHtmlString dropDownList = System.Web.Mvc.Html.SelectExtensions.DropDownListFor(htmlHelper, expression, new List<SelectListItem>(), attributes);
    return dropDownList;
}

The actual Merge method looks like this.

private static dynamic Merge(object item1, object item2)
{
    IDictionary<string, object> result = new ExpandoObject();

    foreach (var property in item1.GetType().GetProperties())
    {
        if (property.CanRead)
            result[property.Name] = property.GetValue(item1);
    }

    foreach (var property in item2.GetType().GetProperties())
    {
        if (property.CanRead)
            result[property.Name] = property.GetValue(item2);
    }

    return result;
}

Note however that the above implementation does not take into account the possibility that both dynamics may contain the same property and in the current implementation will override each other.

TF400030: The local data store is currently in use by another operation.

Arrrggghhh!

Sometimes Visual Studio drives me nuts….

I’ve been getting constant “The local data store is currently in use by another operation.” errors when using both Visual Studio 2013 and Visual Studio 2012 and while Microsoft claims that its resolved. This definitely doesn’t appear to be the case, so here is the workaround that worked for me.

Navigate to C:\Users\[LocalUserAccount]\AppData\Local\Microsoft\Team Foundation and kill everything in that folder. Kill it with fire! 

Once that’s done you should be good to go! (at least for another 10 minutes before it happens again)

Calling WebAPI service from Windows Phone 8 using HttpClient – Addendum

I’ve noticed that allot of people have visited here to view the entry on Calling WebAPI service from Windows Phone 8 using HttpClient. Since writing it I’ve significantly extended the BaseService class that I wrote for it and thought I should share it online.

So here is a further example of an implementation showing how to call a WebAPI service from Windows Phone (or really any other location).

public abstract class BaseService
{
    private readonly string _BaseAddress;

    //Provide the address however you want
    public BaseService()
        : this("http://192.168.1.4:69/")
    {
            
    }

    public BaseService(string BaseAddress)
    {
        this._BaseAddress = BaseAddress;
    }

    /// <summary>
    /// Create an instance of the HttpClient class and return it.
    /// </summary>
    /// <param name="BaseAddress">The base address of a location to call i.e. http://192.168.1.1:69/ (The service path is provided later)</param>
    /// <returns>System.Net.Http.HttpClient with base address and timeout set</returns>
    private static HttpClient GetHttpClient(string BaseAddress)
    {
        HttpClient client = new HttpClient();
        client.BaseAddress = new Uri(BaseAddress);
        client.Timeout = new TimeSpan(10000000 * 20); //seconds
        return client;
    }

    /// <summary>
    /// Invoke get request with path and parameter and return result.
    /// </summary>
    /// <typeparam name="T">Type to be returned</typeparam>
    /// <param name="Path">Service Path i.e. /Services/Service</param>
    /// <param name="Parameter">Any object that implements ToString() correctly</param>
    /// <returns>Task Of T</returns>
    protected async Task<T> GetServiceAsync<T>(string Path, object Parameter)
    {
        return await BaseService.GetServiceAsync<T>(this._BaseAddress, Path, Parameter);
    }

    /// <summary>
    /// Invoke get request with path and parameter array and return result.
    /// </summary>
    /// <typeparam name="T">Type to be returned</typeparam>
    /// <param name="Path">Service Path i.e. /Services/Service</param>
    /// <param name="ParamArray">Any parameter array that implements ToString() correctly</param>
    /// <returns>Task Of T</returns>
    protected async Task<T> GetServiceAsync<T>(string Path, params object[] ParamArray)
    {
        return await BaseService.GetServiceAsync<T>(this._BaseAddress, Path, ParamArray);
    }

    /// <summary>
    /// Invoke get request with path and parameter array and return result.
    /// </summary>
    /// <typeparam name="T">Type to be returned</typeparam>
    /// <param name="BaseAddress">Base address path to be called</param>
    /// <param name="Path">Service Path i.e. /Services/Service</param>
    /// <param name="ParamArray">Any parameter array that implements ToString() correctly</param>
    /// <returns>Task Of T</returns>
    protected async static Task<T> GetServiceAsync<T>(string BaseAddress, string Path, params object[] ParamArray)
    {
        using (HttpClient client = BaseService.GetHttpClient(BaseAddress))
        {
            string actionUrl = string.Format("{0}{1}", Path, MvcUtilities.BuildWebApiRequest(ParamArray));
            HttpResponseMessage response = await client.GetAsync(actionUrl);
            response.EnsureSuccessStatusCode();
            T result = await response.Content.ReadAsAsync<T>();
            return result;
        }
    }
        
    /// <summary>
    /// Invoke put request with path and parameter and return result.
    /// </summary>
    /// <typeparam name="T">Type to be returned</typeparam>
    /// <param name="Path">Service Path i.e. /Services/Service</param>
    /// <param name="Obj">Any object that implements ToString() correctly</param>
    /// <returns>Task Of T</returns>
    protected async Task<T> PutServiceAsync<T>(string Path, object Obj)
    {
        return await BaseService.PutServiceAsync<T>(this._BaseAddress, Path, Obj);
    }

    /// <summary>
    /// Invoke put request with basepath, path and parameter and return result.
    /// </summary>
    /// <typeparam name="T">Type to be returned</typeparam>
    /// <param name="BaseAddress">Base address path to be called</param>
    /// <param name="Path">Service Path i.e. /Services/Service</param>
    /// <param name="Obj">Any object that implements ToString() correctly</param>
    /// <returns>Task Of T</returns>
    protected async static Task<T> PutServiceAsync<T>(string BaseAddress, string Path, object Obj)
    {
        using (HttpClient client = BaseService.GetHttpClient(BaseAddress))
        {
            HttpResponseMessage response = await client.PutAsJsonAsync(Path, Obj);
            response.EnsureSuccessStatusCode();
            T result = await response.Content.ReadAsAsync<T>();
            return result;
        }
    }

    /// <summary>
    /// Invoke post request with basepath and path return result.
    /// </summary>
    /// <typeparam name="T">Type to be returned</typeparam>
    /// <param name="Path">Service Path i.e. /Services/Service</param>
    /// <param name="Obj">Any object that implements ToString() correctly</param>
    /// <returns>Task Of T</returns>
    protected async Task<T> PostServiceAsync<T>(string Path, object Obj)
    {
        return await BaseService.PostServiceAsync<T>(this._BaseAddress, Path, Obj);
    }

    /// <summary>
    /// Invoke post request with basepath, path and parameter and return result.
    /// </summary>
    /// <typeparam name="T">Type to be returned</typeparam>
    /// <param name="BaseAddress">Base address path to be called</param>
    /// <param name="Path">Service Path i.e. /Services/Service</param>
    /// <param name="Obj">Any object that implements ToString() correctly</param>
    /// <returns>Task Of T</returns>
    protected async static Task<T> PostServiceAsync<T>(string BaseAddress, string Path, object Obj)
    {
        using (HttpClient client = BaseService.GetHttpClient(BaseAddress))
        {
            HttpResponseMessage response = await client.PostAsJsonAsync(Path, Obj);
            response.EnsureSuccessStatusCode();
            T result = await response.Content.ReadAsAsync<T>();
            return result;
        }
    }

}

public class BaseServiceException : Exception
{
    public BaseServiceException() { }
    public BaseServiceException(string Message) : base(Message) { }
    public BaseServiceException(string Message, Exception InnerException) : base(Message, InnerException) { }

}

Microsoft MVC5 + ASP.NET Identity with Telerik OpenAccess Awesomeness

Microsoft’s new membership system ASP.NET Identity is (IMHO) absolutely fantastic! The system itself comes installed as the default provider in Visual Studio 2013 for ASP.NET templates and can be downloaded for use within Visual Studio 2012.

ASP.NET Identity is the next step in the evolution to what was previously known as the SimpleMembership and Membership providers. Previous versions have been extremely brittle; this new approach simplifies and segments the membership provider in such a way that it makes it incredibly easy to plug-in and remove the components as you require and more importantly simplifies development when implementing a separation of concerns in a Service Oriented Architecture. Anyone who has attempted to achieve this with WCF and the previous membership providers will know the difficulties and lack of clear process through which to accomplish this. Another major benefit is that the framework implements all the .NET Async goodness by default. While you could always create your own Async wrappers in the older providers it makes things easier to see this functionality implemented for you.

The problems with the original ASP.NET Membership provider were:

  1. Designed for SQL Server and you can’t change it. You can add profile information, but the additional data is packed into a different table, which makes it difficult to access by any means except through the Profile Provider API.

  2. The provider system enables you to change the backing data store, but the system is designed around assumptions appropriate for a relational database.

  3. Since the log-in/log-out functionality is based on Forms Authentication, the membership system can’t use OWIN.

As the Introduction to ASP.NET identity article goes on to say

Simple Membership did make it easier to customize user profile information, but it still shares the other problems with ASP.NET Membership, and it has some limitations such as:

  • It was hard to persist membership system data in a non-relational store.
  • You can’t use it with OWIN.
  • It doesn’t work well with existing ASP.NET Membership providers, and it’s not extensible.

So, how is ASP.NET Identity different? Well…..

1. Storage backend is completely separate

Complete and total separation of the storage mechanism used within the provider. For example implement your own storage back-end but use something other than the entity framework? Or you want to use some type of NoSQL implementation (such as Azure Tables) or even just an Xml file? Well all you need to do¹ is implement the IUser and the IUserStore interfaces, inject it into your UserManager and you’ve got your own custom storage provider.

Example.

protected void CreateUserManager()
{
    //Create a new user manager based on your User model, inject your UserStore and finally your ORM context
    UserManager<AspNetUser> Manager = new UserManager<AspNetUser>(new OpenAccessUserStore(new EntitiesModel()));

    //Now inject the validator
    Manager.UserValidator = new UserValidator<AspNetUser>(Manager)
    {
        AllowOnlyAlphanumericUserNames = false
    };

    //And set a property so you can use the UserManager when required
    this.UserManager = Manager;
}

//Public property to access your UserManager instance.
public UserManager<AspNetUser> UserManager { get; private set; }

Note that all you need to do to create a basic IUserStore and IUser is implement this.

public interface IUserStore<TUser> : System.IDisposable where TUser : Microsoft.AspNet.Identity.IUser
{
    System.Threading.Tasks.Task CreateAsync(TUser user);
    System.Threading.Tasks.Task UpdateAsync(TUser user);
    System.Threading.Tasks.Task DeleteAsync(TUser user);
    System.Threading.Tasks.Task<TUser> FindByIdAsync(string userId);
    System.Threading.Tasks.Task<TUser> FindByNameAsync(string userName);
}

AND THIS

public interface IUser
{
    string Id { get; }
    string UserName { get; set; }
}

2. General decoupling

Previously the provider implementation was extremely closely coupled between its various ‘bits’. The result would often cause confusion about which methods to invoke and under what circumstances (at least for me). Sometimes all you’d want to do is authenticate, sometimes you want to authenticate and sign in and sometimes you want to go straight to the database and just retrieve some bit of User info. Because of this change of implementation it’s been significantly easier to build a project using this provider and integrate it with WCF cleanly. In part this is because it’s now much easier to say, “Give me all claims for this user.” then “Authenticate the following claims.”. They are completely different subsystems and have no direct inter-dependencies.

3. Unit Testing

Clear interface based contracts between the various components of the framework make dependency injection and unit testing much simpler.

4. Claims based

While roles still exist within ASP.NET Identity the emphasis to a claims based authentication seams clear. Claims are useful because they abstract the individual elements of identity and access control into two parts. Unless you’ve got a reason not to, I suggest it makes sense to use claims rather than roles.


Finally I’ve gone ahead and built a generic Visual Studio project template extension which shows how to integrate MVC5 with ASP.NET Identity behind WCF webservices and utilizing Telerik OpenAccess ORM for the storage provider (Because OpenAccess kicks ass…) and deployed it to the Visual Studio Gallery for everyone to use or if you prefer just a straight download of the files.

The project itself demonstrates a number of things including:

  1. How to create a NetTCP WCF service without autogenerated proxy classes.
  2. How to use ASP.NET Identity in a WCF service
  3. How to use a different ORM as an alternative to the entity framework
  4. How to include System.ComponentModel.DataAnnotations in a portable class library for your Views.
    1. Which allows the ability to use them across your MVC, WCF, Windows Phone and Xamarin applications.

Hopefully someone else will find the template and source code useful!


  1. It’s not quite that simple (you might need to implement between 1 and like 10,000,000 interfaces), but almost!

Using WebMatrix, WCF and “You must call the WebSecurity.InitializeDatabaseConnection method before you call any other method of the WebSecurity class.” error

As an addendum to my previous post regarding using WebMatrix in WCF you may run into a situation where you receive the error “You must call the WebSecurity.InitializeDatabaseConnection method before you call any other method of the WebSecurity class.” 

Should such a situation arise you might quickly discover that simply placing the initialization code into the Application_Start event handler as you normally would does not work. This is because Application_Start is part of the http pipeline and will only get invoked if a http request is made.

So whats the solution? A little known feature of the App_Code folder which basically allows you to create a global Application Start hook regardless of protocol exactly like you assume the Application_Start handler is doing. This is done by implementing any class that contains a static void AppInitialize().

In other words you can then do this.

public class App
{
    private static SimpleMembershipInitializer _initializer;
    private static object _initializerLock = new object();
    private static bool _isInitialized;

    //This is the key, any class that implements this method that lives in the App_Code folder will work
    public static void AppInitialize()
    {
        LazyInitializer.EnsureInitialized(ref _initializer, ref _isInitialized, ref _initializerLock);
    }

    public class SimpleMembershipInitializer
    {
        public SimpleMembershipInitializer()
        {
            if (!WebSecurity.Initialized)
                WebSecurity.InitializeDatabaseConnection("DefaultConnection", "UserProfile", "UserId", "UserName", autoCreateTables: true);
        }
    }

}

And that’s it, you should be all good…

Using WebMatrix, SimpleMembershipProvider in WCF service and the “This method cannot be called during the application’s pre-start initialization stage” error.

Having made the transition to using MVC architecture for all my new applications I recently came across a situation where I needed to use the WebMatrix membership provider within my WCF services. It wasn’t a trivial process so I thought I would document it here.

So how do you get access to the SimpleMembershipProvider in WCF?

First add the references to the WebMatrix dlls

references

Second add the Web.Config reference in system.web as such

<membership defaultProvider="SimpleMembershipProvider">
  <providers>
    <add
      name="SimpleMembershipProvider"
      type="WebMatrix.WebData.SimpleMembershipProvider, WebMatrix.WebData"
      connectionStringName="MyApplicationConnectionString"
      applicationName="MyApplicationName"
      enablePasswordRetrieval="false"
      enablePasswordReset="true"
      requiresQuestionAndAnswer="false"
      requiresUniqueEmail="true"
      passwordFormat="Hashed" />
  </providers>
</membership>

Making sure you select your defaultProvider as SimpleMembershipProvider.

Lastly make sure the required assemblies are referenced in the web.config system.web.compilation.assemblies section as such.

<compilation debug="true" targetFramework="4.5">
  <assemblies>
    <add assembly="WebMatrix.Data, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>
    <add assembly="WebMatrix.WebData, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>
  </assemblies>
</compilation>

and at that point you should be able to do this.

SimpleMembershipProvider provider = (SimpleMembershipProvider)System.Web.Security.Membership.Provider;

and use the provider now as you as you normally would i.e. ValidateUser(), ChangePassword() etc…

However at this point I ran into an issue where the following error appeared. “Parser Error Message: This method cannot be called during the application’s pre-start initialization stage.”. The solution to this problem was the following StackOverflow post and adding the these into my appSettings.

<appSettings>
  <add key="autoFormsAuthentication" value="true"/>
</appSettings>

Which successfully fixed the problem and everything worked at that point.

Visual Studio 2013 initial thoughts – Followup

Having now spent the last couple of weeks building my first applications with Visual Studio 2013 I’m comfortable giving a brief overview of my conclusions.

Firstly it is clear that 2013 has tried to completely re-create the user experience for Visual Studio developers. It has done this by enabling a high contrast type theme by default which among many other things makes the icons used in solution explorer much clearer to read.

solutionsexplorer

While this was possible in previous VS versions making this theme the default pushes you as a developer to try it and once you’ve gotten used to it, its hard to go back to the burning white VS themes of the past.

The second most strikingly noticeable feature is the reference counter at the top of each method.

coderefcount

Personally I love this feature but if you don’t you can turn it off as described in this stackoverflow question.

Thirdly it’s clear that the VS team has made significant improvements with speed and built a clear mechanism where one ongoing process doesn’t slow the remaining IDE experience. Just when you think VS is as fast and responsive as it can get they make it increasingly responsive and fluent.

HOWEVER! and there is a big however. VS 2013 is both still lacking features that appear to be documented online AND is largely unstable and probably not ready for full scale production use. 

Basically the IDE will randomly decide to shutdown and restart at various times during use and it appears certain compilation operations will still cause hickups where the IDE will become completely unresponsive for minutes and occasionally never recover. Further there appears to be issues with the browserlink functionality described in this article (causing me to have to disable it) and push notification auto code generation for Windows Phone 8 while documented online in this article (which has since changed), does not appear to exist.

In conclusion, VS2013 will unquestionably be a huge improvement both from VS2010 and VS2012 but still has at least one service pack to go before it is ready for prime time, so transition projects to it with that in mind!

Microsoft Windows Azure Storage BlockBlob Intro

I just wanted to show a quick example of how to save a basic item in Microsoft Windows Azure Storage using BlockBlob storage.

Basically using the simplest process it takes about 8 steps to successfully save an item in Azure Storage.

  1. Get the CloudStorageAccount
  2. Get a CloudBlobContainer
  3. If container doesn’t exist create it
  4. Get a CloudBlockBlob from the CloudBlobContainer
  5. Create a MemoryStream for your byte array
  6. Set the permissions
  7. Set the content-type
  8. Upload the stream

In code this looks like this

morecode

and click here to download a simple little Azure BlockBlob storage manager that I created to help with the process.

Always use ChannelFactory when referencing WCF services (particularly for Azure)

Given the indeterminate nature of the IP addresses of Azure web roles (There are a number of exceptions to this but in general) you end up in a real pickle if you you use the Service Reference functionality built into Visual Studio that most of us regularly do.

(This thing)

Image

Truthfully, the way the proxy service references have always worked had its flaws despite its convenience.

The problem boils down to two things. First, if you’re correctly using WCF services you should be binding to DataContracts and Interfaces rather than any concrete implementations anyway. Secondly, you’re stuck with hard-coded values that live in your web.config, with what is inherently dynamic and often not known at compile time (ip addresses).

So how do you solve it?

Remarkably simply, it takes the form of the channel factory and provided you have both your datacontracts and your service interfaces referenced you can then do this.

Image

Download the example.